Archiv für den Monat: Februar 2017

VOx Detektor versus ASi Silizium Detektor – Ein Vergleich

VOx (Vanadium Oxide) Detektortechnologie und ASi (Amorphes Silizium) gegenübergestellt.

Der Europäische und Osteuropäische Markt ist dominiert von Herstellern die ASi Detektoren verbauen, in den USA hingegen ist die VOx Technologie marktpräsenter, warum?

Vier vereinfachte Antworten hierauf sind:
a) Es gibt in Europa nur ASi Hersteller (Firma ULIS in Frankreich)
b) ULIS 1) hat vor Jahren auf die ASi Produktion gesetzt
c) US Exportrestriktionen limitieren die Verwendung von US VOx Sensoren
d) die ASi Detekorenherstellung ist einfacher und somit preiswerter

Worin liegen die technischen Unterschiede beider Technologien?
Betrachten wir hierzu den näheren Aufbau der Detektorzellen:

Mikrobolometer-Stuktur
Schematischer Schnitt durch eine ASi Zelle

ASi-Detektorzelle
Schematischer Aufbau einer Zelle

ASi-VOx-Vergleich
Detektorzellen in der  REM Mikroskop Ansicht
a) ASi links                         b) VOx rechts

Detektor-Sandwichstruktur
Herkömmliche VOx Zellen in der REM Ansicht

Opt-Sandwich-fpa
optimierte VOx Zelle in der REM Ansicht.

Amorphes Silizium:
Diesen Rohstoff gibt es wie Sand am Meer..,
er lässt sich einfacher verarbeiten, ist preiswerter und somit weiter verbreitet.

Vanadium Oxide:
Vanadium als Rohstoff ist seltener und somit teurer als Silizium.
VOx ist härter wie Stahl und lässt sich schwerer verarbeiten.
VOx verfügt über einen besseren Wärmeleitkoeffizient gegenüber ASi und kann somit Photonen schneller weiterleiten, verfügt somit über eine bessere Leistungsfähigkeit.

Wie definieren wir Leistungsfähigkeit?
Die Leistungsfähigkeit wird insbesondere durch die Temperatursensibilität des Detektors und somit des Trägermaterials bestimmt. Kennzahl hierfür ist NETD (Noise Equivalent Temperatur Difference).
Die Bewertung des “Rauschen” (Noise) ist bestimmt durch die notwendige Strahlung, die notwendig ist um ein Ausgangssingnal zu erzeugen, welches identisch ist mit dem Detektorgrundrauschen oder vereinfacht erklärt: Es definiert die minimal messbare Temperaturdifferenz.

Eine höhere Temperatursensibilität des Detektors ist beim Anwender erkennbar durch ein schärfers, kontrastreicheres Bild, folglich mehr Reichweite und bessere Schärfe im Zoombereich.

Vergleichen wir eine ASi mit einer VOx Optik, die über identische Linsen  (f-Nummer) und Auflösung verfügen, stellen wir fest (auch rechnerisch), dass die VOx Optik um 3-fach höhere Temperatursensibilität verfügt. (VOx = 0,039 Kelvin zu 0,1 Kelvin = ASi, bei 25C° und f=1).

Wettlauf zwischen ASi und VOx Herstellern
Im Vergleich stellen wir fest, dass die Optimierung der VOx Zellenstruktur fortgeschrittener ist. Patenschutzrechte erschweren eine einfache Dublikation der Technologie.

Nehmen wir die oben im Bild ersichtliche optimierte Zellenstruktur eines der führenden US Sensor Herstellers als Beispiel:
Durch die durchlöcherte Oberfläche der oberen “Membrane”, wird die Oberfläche verringert (absorber Superstruktur) und somit das “Temperaturansprechverhalten” durch weniger Masse optimiert.  Die Löcher der oberen Membrane sind 1/2 so groß wie die Wellenlänge des Lichtes (8 µm) also 4 µm. Somit “sieht” das Licht die Löcher nicht und “verliert” keine Energie.
Die Temperatursensibilität wird durch diese geniale Erfindung verbessert.

Einblick in die ULIS ASi Fertigung gibt der folgende Youtube Film

ULIS-Microbolometer-production
ASi Fertigungsprozeß

Vorteile von VOx gegenüber ASi zusammengefasst:
– kein Einbrennen z.B. bei direkter Sonneneinstrahlung
– sehr geringes Rauschverhalten, somit bessere Bildqualität
– allgemein höhere Temperatursensibilität
– geringerer Stromverbrauch
– kürzeres “Pixel Ansprechverhalten”

Fazit:
Vergleicht man beide Technologien in einer Optik mit eigenen Augen, wird man sich zu 99% zu der VOx Technologie entscheiden, aber auch hier gilt: Die Qualität des Gesamtsystems entscheidet, nicht nur der Sensor alleine!
Auch alle US Rüstungsprogramme verwenden VOx Detektoren, dies ist oft ein Indiz dafür, dass es sich um die technisch bessere Wahl handelt.

Weiterführende Literatur über Microbolometer Strukturen finden Sie hier: Microbolometer .pdf

——————————————–
1)  Ausgegliederte Unternehmung aus den Forschungsaktivitäten der CEA, hier Subdivision LETI (French Alternativ Energies and Atomic Energy Commission), staatliche Einrichtung mit gewerblichem und kommerziellem Charakter, unter gemeinsamen Zuständigkeit des Ministeriums für Bildung und Forschung, des Verteidigungsministeriums und des Ministeriums für Wirtschaft, Finanzen und Industrie.

 

12µm Pitch versus 17µm Detektor – ein Vergleich

12 µm Detektortechnologie und 17 µm gegenübergestellt
Stand der Technik im Bereich der ungekühlten Wärmebildoptiken sind VOx Detektoren mit einer Detektorzellengröße (Pitch) von 12 Mikrometer im Quadrat.

Die Vorteile liegen auf der Hand: Kleinere Bauform, kleiner notwendige Linsen mit selbigen Sehfeld im Vergleich zu Detektoren mit größerem Pitch, somit Gewichtsersparnis, weniger Stromverbrauch und insbesondere eine schärfere und detailreichere Bilddarstellung durch die Verwendung neuester Bildoptimierungssoftware / Algorithmen.

Als Faustformel gilt: „Je kleiner der Pitch, desto schärfer das Bild“

12-micron-BOSON-vs.-17-micron-ULIS
12 µm Detektor links   17 µm Detektor rechts

Warum kleiner notwendige Linsen?
Betrachten wir einen IR Detekor unter einem REM Mikroskop, so lässt sich die folgende Schachbrettartige Struktur erkennen:

FLIR Boson Nahaufnahme

Jede Detektorzelle (vgl. eines Schachbrettfeldes) ist wiederum vergrößert und schematisch dargestellt wie folgt aufgebaut:

IR Detektoraufbau
Detektorzellenstruktur in Schema

12µm Pitch ist also die Pixelgröße (size) einer Detektorzelle im Quadrat.
Bei einem 12 micron Detektor sind also die Detektorzellen entsprechend kleiner, welches wiederum zu einer kleineren Gesamtbauform des Detektors führt.
Das folgende Bild vermittelt einen Eindruck über die Größenrelationen in der Pixelwelt:

Pixel Größenvergleich

Selbiges Sehfeld bei kleinerer Linse und kleinerem Pitch?
Die folgende Graphik zeigt den Vergleich von einer Optik mit 12µm und 25µm Pitch:
Zu erkennen ist, dass die 12µm Optik bei kleinerer Linse das selbe Sehfeld aufweist.
Theoretische Grundlagen sind vergleichbar mit der einer Lochkamera, Strahlensatz.

12µm vs.25µm

Kleinerer Pitch = mehr Leistung = ein Wiederspruch?
Um diese Fragen zu beantworten müssen wir vorab die Leistung definieren.
Ist Leistung =
a) Auflösung (Bildschärfe)?
b) Temperatursensibilität?

Vergleichen wir die Detektorzelle mit einem “Eimer” der Photonen “einsammelt”, so wäre die Logik: “Je größer desto besser, da mehr Photonen einfallen und somit mehr “verbeitet werden können”.
Fazit: Der Pixel Pitch (Eimergröße) bestimmt die Sensibilität!”

Die Pixelgröße bestimmt aber auch die Auflösung (vgl. Fernseher),
Fazit: “Je kleiner, desto schärfer das Bild.

Zur Erklärung nehmen wir folgendes zutreffendes Beispiel.
Vergleichen wir auf der Rennstrecke einen Wagen mit 12 Zylinder Motor aus dem Jahre 2010 mit einen aufgeladenen 6 Zylinder Boxermotor aus dem Jahre 2017. Wir stellen fest, dass der Wagen mit dem 6 Zylinder sicherlich besser performt und schneller am Ziel ist.
Wir wissen aber auch,  dass erst ab 4 Liter Hubraum beim PKW die Laufkultur anfängt, aber gelernt wurde:  Hubraum ist nicht alles!
Im übertragenen Sinne bedeutet dies: Entscheidend für die Gesamtleistungsfähigkeit eines Systems, ist die optimale Abstimmung aller Komponenten, die neueste Technologie (Software etc.)  und wie im Bsp. gemeint, die PS-Leistung die am Ziel ankommt!
Und das sehen Sie bei Optiken mit 12 micron Pitch sofort mit Ihren eigenen Augen..

Je kleiner der Pitch, desto wirtschaftlicher die Herstellung der Sensoren
Die Reduktion des Pitches ist die Konsequenz eines Kostenreduktionsbestrebens in der Sensorenfertigung.
Je mehr Sensoren beim Herstellprozeß gefertigt werden können, desto niedriger die Stückkosten. Das folgende Bild zeit einen Sensorwaver (vgl. Waffeleisen), je mehr Sensoren auf einem “Backblech” passen, desto mehr Sensoren ergeben sich aus einem “Backvorgang”.

waver stack
Sensor                                    Sensor waver

In der Herstellung spricht man hierbei vom SWAP-C Reduktionsbestreben:
Reduktion von: Size, Weight, Power, Cost.
Dies zeigt anschaulich das folgende Schaubild:

need-for-SWAPC

Fazit:
Wollen Sie eine Optik erwerben, die Sie auf den letzten technologischen Stand bringt und Sie somit die nächsten zwei Jahre nicht der Technologie “hinterher laufen”, so investieren Sie in eine Optik mit 12 µm Pitch. Das warten hat ein Ende!